Dice Activities for Algebraic Thinking

Patterns • Relationships • Functions

Chet Delani, Mary Saltus

Directions for Hundred Chart and
 Operations Toss Activities

Objectives

- Recognize multiples, square numbers, and prime numbers.
- Apply the order of operations in creating equations.
- Generate equations using a random set of numbers.
- Employ mathematical reasoning.

Introduce the Hundred Chart Activities by demonstrating on a smart board or overhead and playing against the class. Two teams with two students on a team are suggested. Teams give students an opportunity to discuss moves and strategies and provide a check on correct computation.

Materials

- One chart per team
- Recording chart (page 6) for equations
- Dice
- Colored tokens

Multiple Hundred Chart

How to Play

- The teams begin by listing square numbers, cube numbers, summations, and factorials for the numbers given in the top portion of their recording charts.
- The teams each toss a die.The team with the higher number goes first. Each team chooses a color token.
- The teams agree on a number $(2,3,4,5,6,7,8,9$, or 10$)$ as the focus for the activity and circle that number at the top of the chart.
- The team whose turn it is tosses 4 dice and uses all 4 numbers to create an equation that equals a multiple of the circled number. Example I: The circled number is 6 and the team has tossed $5,4,2,2$. Using all 4 numbers, the team creates the equation $54 \cdot(2 \div 2)=54$ and places a token on 54 . Example 2 : Using the same numbers $(5,4,2,2)$, the team creates the equation $5!-[4!+(\Sigma 2 \cdot 2)]=90$ and places a token on 90. Or: $\left(5^{2}-4\right) \cdot 2=42$.
- Before a team places a colored token on the multiple, the opposing team must agree to the solution.
- Teams keep a record of the equations they have generated on their recording charts.
- After 10 tosses, the teams tally the numbers under their tokens. The team with the higher score wins.

Variations

- The teams choose more than one number from which to create multiples (for example, play includes all multiples of 3 and 5).
- Each team has a chart. The first team to cover all multiples of the circled number wins.
- Each team has a chart. Taking turns, the teams toss 6 dice and cover as many multiples as possible using all 6 dice. (Each die may be only used once in a turn.)

Not-a-Multiple Hundred Chart

This version is played in the same way as the Multiple Hundred Chart activity, except that the goal is to write equations that do not equal a multiple of the circled number or numbers. (For example, if the number circled is 2 , the goal of play is to write equations that equal odd numbers-i.e., not multiples of 2 .)

Square Number and Prime Number Hundred Charts

How to Play

- Teams share a chart.
- Taking turns, the teams each toss 4 dice. Using all 4 numbers, the team creates an equation that equals a square or prime number and places a token on that number.
- Before a team places a colored token on the number, the opposing team must agree to the solution.
- The teams keep a record on their recording charts of the equations they have generated.
- After all 10 square numbers or 25 prime numbers have been covered, the teams tally the numbers under their tokens. The team with the higher score wins.

Variations

- Each team has a chart. The first team to cover all 10 square numbers or all 25 prime numbers wins.
- Each team has a chart. Tossing 6 dice, each team covers as many square or prime numbers as possible using the 6 dice. (Each die may be only used once in a turn.)

Operations Toss Chart

Working from left to right in an equation, the order of operations is: parentheses, exponents, multiplication, division, addition, subtraction.

How to Play

- Teams share a chart.
- Each team tosses a die.The team with the higher number goes first. Each team chooses a color token.
- The teams think about the order of operations (parentheses, exponents, multiplication, division, addition, subtraction) as they do the activity.

$$
\begin{array}{cc}
(2 n)^{2}+y \\
\text { Red die }=n
\end{array} \quad \text { or } \quad \begin{gathered}
2 n^{2}+y \\
\text { Green die }=y
\end{gathered}
$$

- Taking turns, the teams toss a red die and a green die and place the number on the red die as n and the one on the green die as y in either of the following expressions:

$$
(2 n)^{2}+y \text { or } 2 n^{2}+y
$$

- The solution must be on the chart.
- The team places a token on the solution.
- The opposing team must agree to the solution. The teams keep a record on their recording charts of the equations they have generated.
- After 10 tosses, the teams tally the numbers under their tokens. The team with the highest score wins.

Variations

- The team with the most numbers covered after 10 tosses wins.
- The teams create their own order of operations equations for a Hundred Chart activity.

Prime Number Hundred Chart

How to Play

- Each team tosses a die. Higher number goes first.
- Each team chooses a color token.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Square Number Hundred Chart Activity

How to Play

- Each team tosses a die. Higher number goes first.
- Each team chooses a color token.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Operations Toss $-(2 n)^{2}+y$ or $2 n^{2}+y$

- Toss a red die and a green die. Red die $=n$; green die $=y$.
- On the Operations Toss recording chart, compute ($2 \boldsymbol{n})^{2}+\boldsymbol{y}$ or $2 \boldsymbol{n}^{2}+\boldsymbol{y}$. Chose either solution, and place a token on the solution on the chart below.

How to Play

- The opposing team must agree to your solution.
- After 10 tosses, each team tallies the numbers under their tokens. The team with the higher score wins.

6	52	10	65	41	106	11	5	33	37
36	12	76	11	146	51	105	66	5	69
7	42	145	22	3	69	103	77	149	38
10	78	35	150	105	73	67	39	70	19
53	67	3	40	7	147	21	50	14	145
8	36	23	55	68	24	40	17	101	37
147	41	77	18	102	4	34	75	10	56
101	38	73	54	148	78	22	52	66	10
102	10	13	74	24	38	104	9	146	4
37	68	20	65	56	103	104	148	34	150

Operations Toss Recording Chart

Red die $=\boldsymbol{n}$; Green die $=\boldsymbol{y}$

$(2 n)^{2}+y=$	$2 n^{2}+y=$

Directions for Integer Activities

Objectives

- Develop a working knowledge of the mathematical concepts of adding, subtracting, and multiplying positive and negative integers.
- Practice computing the sums of positive and negative integers I through 6 with the goal of developing fluency and skill in applying to larger numbers.
- Identify the role of luck versus that of skill in an activity using dice.
- Develop communication and cooperation skills by working in collaborative teams of two students.

Introduce Three-Toss Elimination, Integer Dice Line, and Arranging Integers by demonstrating each activity on an interactive whiteboard or overhead and playing against the class. Two teams with two students on a team are suggested. Teams give students an opportunity to discuss moves and strategies and provide a check on correct computation.

Three-Toss Elimination

Materials

- 6 red dice and 6 green dice
- Chart for each team

How to Play

- Green dice = positive numbers
- Red dice $=$ negative numbers
- Each team tosses a die.The team with the higher number goes first.
- Toss I:Taking turns, the teams toss 6 red and 6 green dice in the playing area. The teams then remove from their playing area combinations of red and green dice that equal 0-for example, a red 3 and a green 3, or a red I , a red 2 , and a green 3 .
- Toss 2: Each team tosses just the dice remaining on their charts. Again, the teams remove combinations of dice that equal 0 .
- Toss 3: If either or both teams have dice remaining, they toss the dice and again remove combinations of dice that equal 0 .
- The teams record their score for Round I on their charts.
- The team with the score closest to $\mathbf{0}$ after three rounds wins.

Integer Dice Line

Materials

- 10 red dice and 10 green dice
- Score sheet

How to Play

- Green dice = positive numbers
- Red dice $=$ negative numbers
- Each team tosses a die.The team with the higher number goes first.
- Team I tosses 10 red and 10 green dice and randomly places the tossed dice in a line.
- Team 2 takes a die from either end of the line of dice.
- The two teams take turns removing a die from either end of the line of dice until no dice remain.
- The teams tally the dots on their dice. (The green dice represent positive integers and the red dice represent negative integers.)
- The team with the score closest to $\mathbf{0}$ wins that round.
- The teams play three rounds. The team with the score closest to $\mathbf{0}$ after three rounds wins.

Integer Dice Line (cont.)

Variations

After three rounds:

- The team with the score closest to +I wins the game.
- The team with the score closest to -I wins the game.
- The team with the score closest to $\mathbf{+ 5}$ wins the game.
- The team with the score closest to - $\mathbf{5}$ wins the game.

Arranging Integers - Adding, Subtracting, Multiplying

Prerequisite

Students are familiar with the algorithms of adding, subtracting, and multiplying positive and negative integers.

Materials

- 4 red dice and 4 green dice
- Chart for each team

How to Play

- Each team tosses a die.The team with the higher number goes first.
- Taking turns, the teams toss 4 red dice and 4 green dice. In the column for Round I, the team whose turn it is arranges the red dice in the boxes marked " R " and the green dice in boxes marked "G," so that the total for the four dice pairs is as close to 0 as possible.
- The team computes its score for that round.
- After 3 rounds, each team totals their scores for the three rounds. The team with the score closest to 0 wins.

Variations

- The team winning two out of three rounds wins.
- The score closest to $+I$ wins the game.
- The score closest to -I wins the game.
- The score closest to $\mathbf{+ 5}$ wins the game.
- The score closest to $\mathbf{- 5}$ wins the game.

Discussion

- Which combinations tossed made for easy computation?
- What connections did you make that allowed you to make generalizations and increase your computation speed?

Integer Dice Line

- To be the team with the score closest to $\mathbf{0}$ when each green die $=a$ positive integer and each red die $=a$ negative integer.

How to Play

- Each team tosses a die. Higher number is Team I.
- Team I tosses 10 red and 10 green dice and randomly places the tossed dice in a line.
- Team 2 takes a die from either end of the line of dice.
- Team I takes a die from either end of the line of dice.
- Teams alternate removing a die from either end of the line of dice until no dice remain.
- Teams tally the dots on their dice. The green dice = positive integers and the red dice $=$ negative integers.
- The team with the score closest to 0 wins that round.
- Play three games and total the scores. The team with the score closest to 0 wins.

Round	Team 1 Score	Team 2 Score
1		
2		
3		
Totals		

Variations

- The team winning two out of three rounds wins.
- The score closest to +I wins the game.
- The score closest to -I wins the game.
- The score closest to +5 wins the game.
- The score closest to -5 wins the game.

Directions for Solving for \boldsymbol{n}-Tic-Tac-Toe

Objectives

- Develop a working knowledge of the mathematical concepts of exponents, square roots, factorials, summations, negative numbers, and fractions.
- Identify the role of luck versus that of skill in an activity using dice.
- Develop communication and cooperation skills by working in teams of two students.

Tic-Tac-Toe is a familiar game form. These Tic-Tac-Toe activities provide a challenging and playful variation to use in solving for n.
Introduce the Tic-Tac-Toe activities by demonstrating on an interactive whiteboard or overhead and playing against the class. Teams with two students on a team are suggested. Teams give students an opportunity to discuss moves and strategies and provide a check on correct computation.

Materials

- Chart
- Dice
- Tokens

How to Play

- Each team chooses a token and tosses a die. The team with the higher number goes first.
- Taking turns, the teams each toss a die and find an equation on the chart for which the tossed number is the solution for n. The team places a token on the equation. If the number is not available, the team loses a turn.
- The teams attempt to place their tokens in continuous alignment vertically, horizontally, or diagonally to win the game. The first team to form a Tic-Tac-Toe wins.
- The team winning two out of three games is the winner.

Suggestion

- With more difficult levels of play, or if students are struggling, suggest the use of a calculator.

Variations

- The team whose turn it is places a token on every box in which the solution appears.
- The team whose turn it is replaces the opposing team's token with its own token if the die toss matches the solution.

Discussion

- Does the team or individual who goes first have an advantage?
- Is this a game of luck or skill?
- Is there a fair chance of each solution being tossed?
- What strategies do you use in solving for n ?
- Does listening to other students' strategies help or hinder your way of thinking?

Solve for n - Tic-Tac-Toe 1

How to Play

- Each team chooses a colored token.
- Toss a die. Higher number goes first.
- Toss a die. Find an equation on the grid for which the tossed number is the solution for n. Place a token on it.
- If the solution is not available, lose a turn.
- First team to get three in a row wins that game.
- Play 3 games. Team winning 2 out of 3 games wins.

$\begin{gathered} 5-n=0.5 \cdot 8 \\ n= \end{gathered}$	$\begin{gathered} 6+n=8-n \\ n= \end{gathered}$	$\begin{gathered} \frac{1}{9} \cdot 54=n \\ n= \end{gathered}$
$\begin{gathered} -3+7=n \\ n= \end{gathered}$	$\begin{gathered} n \cdot n=9 \\ n= \end{gathered}$	$\begin{gathered} -6+n=-1 \\ n= \end{gathered}$
$\begin{gathered} \frac{1}{2} n=9 \div 3 \\ n= \end{gathered}$	$\begin{gathered} 42+n=44 \\ n= \end{gathered}$	$\begin{gathered} 100 \div n=25 \\ n= \end{gathered}$

Solve for \boldsymbol{n} - Tic-Tac-Toe 2

How to Play

- Each team chooses a colored token.
- Toss a die. Higher number goes first.
- Toss a die. Find an equation on the grid for which the tossed number is the solution for n. Place a token on it.
- If the solution is not available, lose a turn.
- First team to get three in a row wins that game.
- Play 3 games. Team winning 2 out of 3 games wins.

$\begin{gathered} 1^{6}=n \\ n= \end{gathered}$	$\begin{gathered} 5^{2}-n^{2}=3^{2} \\ n= \end{gathered}$	$\begin{gathered} 51-n=7^{2} \\ n= \end{gathered}$
$\begin{gathered} 31-n^{2}=22 \\ n= \end{gathered}$	$\begin{gathered} n^{2} \cdot 2^{2}=6^{2} \\ n= \end{gathered}$	$\begin{gathered} 10^{2} \div n^{1}=20 \\ n= \end{gathered}$
$\begin{gathered} 10^{2}-n^{2}=8^{2} \\ n= \end{gathered}$	$\begin{gathered} 9^{2}-n=76 \\ n= \end{gathered}$	$\begin{gathered} 6^{2} \div n=3^{2} \cdot 2 \\ n= \end{gathered}$

