

Can Early Algebra Impact Future Success?

We all know that algebra can be the gatekeeper to future success in mathematics, in college and beyond. All too often, students reach middle and high school with little understanding of algebraic concepts. As a result, many students are unsuccessful in algebra, which impacts achievement in college and future career opportunities. What if, instead, students were encouraged to build their algebraic understanding over time, beginning in the elementary grades?

How to Teach Early Algebra?

Shifting the teaching and learning of algebra concepts to the early grades raises significant questions.

- What does early algebra look like in the elementary grades?
- Would young children be capable of thinking in ways that have traditionally been viewed as possible only for older students?

- How do we support teachers in building classrooms that foster deep algebraic thinking?

The LEAP program is a culmination of years of research to answer questions such as these. It is a supplemental program entirely focused on building early algebraic thinking. It uses a series of student-focused activities to help children build their understanding of key algebraic concepts and practices over time. The program is structured so that algebraic concepts develop across grades using a connected curriculum that reflects a progression of increasingly sophisticated ideas.

The Big Ideas

The LEAP program focuses on three big ideas:

- Equivalence, Expressions, Equations, and Inequalities
- Generalized Arithmetic
- Functional Thinking

The chart below shows these ideas progress across the three grade levels.

Big Ideas in the
Grades 3-5 LEAP Curriculum

Big Idea Equivalence, Expressions, Equations, and Inequalities		
Grade 3	Grade 4	Grade 5
Understanding the Equal Sign Lessons 1 and 2	Understanding the Equal Sign Lesson 1	Understanding the Equal Sign Lesson 1
Variables, Expressions, and Equations Lessons 7, 8, and 9	Variables, Expressions, and Equations Lessons 7, 8, and 9	Variables, Expressions, and Equations Lessons 9 and 11
	Properties of Equations Lesson 10	Properties of Equations Lesson 7 and 8
Big Idea Generalized Arithmetic		
Grade 3	Grade 4	Grade 5
Properties of Operations Lessons $3,4,10$, and 11	Properties of Operations Lessons 2, 3, 4, and 11	Properties of Operations Lessons 2, 3, 4, 10, and 12
Relationships in Arithmetic Lessons 5 and 6	Relationships in Arithmetic Lessons 5 and 6	Relationships in Arithmetic Lessons 5 and 6
Big Idea Functional Thinking		
Grade 3	Grade 4	Grade 5
Finding a Relationship Lessons 12, 13, and 15	Finding a Relationship Lesson 12	
Reasoning with Relationships Lessons 17 and 18	Representing and Reasoning with Relationships Lessons $13,14,15,16,17$, and 18	Representing and Reasoning with Relationships Lessons $13,14,15,16$, and 19
Constructing and Interpreting Graphs Lessons 14 and 16		Constructing and Interpreting Qualitative Graphs Lessons 17 and 18
Big Ideas All Three Big Ideas		
Grade 3	Grade 4	Grade 5
	Using "Letters" in Math Lesson 19	Using "Letters" in Math Lesson 20

The LEAP Program

- Designed to be integrated with any curriculum.
- Currently offered for Grades 3-5.
- Each grade contains 18-20 one-hour lessons.
- Lessons are taught throughout the year.
- Instruction is divided into four main areas: Plan, Teach, Support, and Assess.

How to Implement LEAP in Your Math Class

The LEAP lessons should be taught throughout the school year. Each lesson lasts about one hour and is designed to fit within the daily math instructional period. Each lesson is designed using the same structure of Jumpstart, Explore \& Discuss, and Review \& Discuss.

LEAP Lesson at a Glance
(from Grade 3)

Built-in Assessment

- Assessments are provided every 4-5 lessons.
- Each assessment is a formative tool that helps teachers determine how students are progressing.

Professional Development

Teachers will learn the research behind the LEAP program and why early algebra is so important. They will learn how to conduct all of the components of a LEAP lesson as well as ideas for incorporating LEAP into their current curriculum.

As teachers develop more confidence with the core practices of LEAP, they will develop "algebra eyes and ears" that will bring out the algebraic features of all math lessons.

Contact leap@didax.com for more information.

About the Research

The LEAP program is based on over a decade of research in elementary classrooms. All lessons have undergone years of testing in authentic settings in order to understand how children make sense of lesson tasks and activities and how to support teachers in successfully implementing the program. Lessons are packed with research-based insights into how children think about particular concepts, the difficulties they might have, and how teachers can address these.
"Through experimental studies, we have found that students who are taught the LEAP curriculum as part of their regular math instruction significantly outperform (their peers) who receive only regular, arithmetic-focused instruction on growth in understanding of core algebraic concepts and practices, including those in at-risk settings" (Blanton et al., 2018).

A study of the effectiveness of the LEAP curriculum was conducted in a diverse population of students in grades 3-5. Forty-six schools in three school districts participated. Students in treatment schools were taught the early algebra intervention by classroom teachers during regular mathematics instruction. Students in control schools received only regular mathematics instruction. Results show that during Grade 3, treatment students, including those in at-risk settings, improved at a significantly faster rate than control students and maintained their advantage throughout the study.
Blanton, M., Stroud, R., Stephens, A., Gardiner, A., Stylianou, D., Knuth, E., Isler-Baykal, I., Strachota, S. (2019). Does Early algebra matter?: The effectiveness of an early algebra intervention in grades 3-5. American Educational Research Journal 56(5), 1930-1972, DOI: 10.3102/0002831219832301

About the Authors

This curriculum was developed by TERC, the University of Texas at Austin, and the University of WisconsinMadison, and was funded in part by grants from the National Science Foundation and the U.S. Department of Education.

MARIA BLANTON
Senior Scientist, TERC, Inc.
Cambridge, MA.

ANGELA MURPHY GARDINER
Senior Research Associate, TERC, Inc. Cambridge, MA.

ANA STEPHENS

Researcher, Wisconsin Center for Education Research, University of Wisconsin-Madison. Madison, WI.

ERIC KNUTH

Elizabeth Shatto Massey Endowed Chair in Education and Director of the STEM Center at the University of Texas at Austin. Austin, TX.

Sample LEAP Lesson

Grade 3 - Understanding the Equal Sign

1 Lesson Overview provides a brief description of the lesson's focus.
2 Lesson Objectives identify the specific learning goals addressed in the lesson.
3 Rationale for the Tasks describes why the tasks are important and how they are designed to address student learning.
(4. Lesson Vocabulary highlights important terms used in this lesson.
(5) Lesson Materials List lets the teacher know exactly which materials they need for this lesson.
PLAN $>$ TEACH $>$ SUPPORT $>$ ASSESS

Lesson 3.1 Understanding the Equal Sign: True/False Equations

Lesson Overview

Students explore equivalence and work to develop a relational understanding of the equal sign. By exploring equations written in forms other than standard form, students come to understand the equal sign as indicating two quantities are equivalent. A relational understanding of the equal sign is critical to their future work with | 4 | Vocabulary |
| :--- | :--- |
| equal sign | |
| equation | |
| expression | |
| Materials | |
| Pan balance or | |
| number balance | | equations.

2 Lesson Objectives

- Develop a relational understanding of the equal sign by identifying equations written in various forms (other than $a+b=c$) as true or false and reasoning why.

3 Rationale for the Tasks

- Students are familiar with equations written in standard form (for example, $a+b=c$). It makes sense to begin with an equation of that form $(4+6=10)$ when introducing the concept of true and false equations.
- The equation $4+6=10+0$ builds from the easily accepted $4+6=10$ to encourage students to think about operations on both sides of the equal sign.
- The equation $10=4+6$ asks students to think about an equation they may refer to as "backwards." More questioning is needed to see if students have an operational or relational view of the equal sign.
- The equation $10=10$ challenges students who feel uncomfortable with equations where there is "nothing to do" (no operation). This reveals the misconception that equations are about performing calculations and that the equal sign means "the answer comes next."
- The remaining equations in the student activity encourage students to consider equations with operations on both sides. Students often find this to be the most challenging form, so consistent exposure is key to building students' relational understanding of the equal sign.
- Students are asked to write their own true/false equations because this activity can be motivating for them while revealing the extent to which they are comfortable working with equations in various forms.
\qquad

Sample LEAP Lesson

Grade 3 - Understanding the Equal Sign

(1) Lesson at a Glance page provides an overview of what will be taught in the lesson.

Explore and Discuss

Have students complete Tasks 1 and 2 and discuss in small groups what makes an equation true or false. Have students complete Task 3 and discuss in their groups what constitutes a good working definition of the equal sign. Do students see the equal sign as an operational symbol, or have they begun to develop a relational understanding of the equal sign?

Sit with groups and observe what they are saying. Select students who exhibit different ways of thinking to enrich whole-group discussions. Help groups that need support by using discussion-building strategies (see Teaching Support, page 7).

Review and Discuss

Are these equations true or false? Explain.
$11+4=15+2$
$23=17+6$

Sample LEAP Lesson

Grade 3 - Understanding the Equal Sign

(1) Jumpstart questions help engage students by recalling information from an earlier lesson or previewing new concepts that will come later.
(2) Explore and Discuss are student-focused small group activities that help students explore and build an understanding of the concepts. Questions in bold blue font are important for teachers to ask during discussion to enrich conversations and develop student's understanding.
(3) Student pages appear in the teacher book alongside the relevant instruction. Blackline masters of the pages are included with each lesson.

Sample LEAP Lesson

Grade 3 - Understanding the Equal Sign

1. Thinking About Student Responses uses research into childrens' algebraic thinking to provide teachers with insight into how student work and discussion reveals how students are progressing in their understanding.

Sample LEAP Lesson

Grade 3 - Understanding the Equal Sign

1 Review and Discuss Prompts give teachers a quick tool to check student understanding and provide just-in-time support for students who are struggling.
2 Addressing Common Difficulties helps teachers recognize and respond to student misconceptions

LESSON 3.1 Understanding the Equal Sign: True/False Equations

Review and Discuss

Are the following equations true or false? Explain.

$$
\begin{aligned}
& 11+4=15+2 \\
& 23=17+6
\end{aligned}
$$

Review and Discuss

Write or display the Review and Discuss question on the board.

- Listen for students who still think operationally about the equal sign. Such students might say, " $11+4=15+2$ is true because $11+4=15$." You could ask, "What about the 2? What role does it play in the equation?"
- Do students think that equations cannot have a single value to the left of the equal sign? Listen for students who say, " $23=17+6$ is backwards." Help students understand that $23=17+6$ is equivalent to $17+6=23$.
- Students are beginning to think relationally about the equal sign when they understand that an equation is true only if the values of the quantities or expressions on both sides are the same.

2 Addressing Common Difficulties
Many students with an operational understanding of the equal sign believe that the equal sign means, "gives the total" or "the answer comes next." Students might say, " $2+3=5=1$ is a true equation" because they add the expression on the left side and ignore the +1 in the expression on the right.
To counter these difficulties, ensure that students understand the equal sign means balance. You could say, "The equal sign means that whatever amount you have on the left is the same as what you have on the right," or " $2+3=5+1$ is not a true equation because $2+3$ is 5 , but $5+1$ is 6 so this equation isn't balanced." For students who need more support, use tools such as a number balance to explore equivalence in more concrete ways.

Sample LEAP Lesson

Grade 3 - Understanding the Equal Sign

(1) Teaching Support provides a deeper look at the concepts and strategies students are learning, ensuring that the big ideas in each lesson are emphasized.
(2) Mathematical Conventions help teachers and students understand accepted practices in mathematics.
(3) Support for Struggling Learners is built in to every lesson, including strategies that will help all students to develop a deeper understanding of new concepts.

The first early algebra curriculum for students in grades 3-5.

\$39.99

each

LEAP

Learning Through an Early Algebra Progression
\#211921 Grade 3

LEAP

Learning Through an Early Algebra Progression
\#211922 Grade 4

LEAP

Learning Through an Early Algebra Progression
\#211923 Grade 5

TeRC
 Because math and
 逑TEXAS
 science build futures

Visit www.didax.com/leap

 to view sample lessons, read the introduction and more.Contact leap@didax.com for further information, including samples, professional development information or to set up a consultation with a Didax representative.

