Square numbers, often called perfect squares, are numbers that can be represented as a product of the same two numbers. Examples you may know are $1=1^{2}, 4=2^{2}, 9=3^{2}$, and $16=4^{2}$. Each of these numbers can also be modeled with unit Algebra Tiles. For example,

The diagram is a square with an area of 4 units.

Variable expressions can also represent squares. With Algebra Tiles, \mathbf{x}^{2} is a square where each side has the length \mathbf{x}.

Below is an example of another square. We can write different expressions for the square.

Make a square out of Algebra Tiles on your work mat for the next example and write two different expressions for the square.
1.

Now, use your work mat to make squares for each of the following. Write another expression for each of your squares.
2. $(x+3)^{2}=$ \qquad
\qquad
3. $(x-1)^{2}=$ \qquad
\qquad
4. $(x-2)^{2}=$ \qquad

How many unit squares do you have in each of your models?
5. $(x+3)^{2}$ has \qquad unit squares
6. $(x-1)^{2}$ has \qquad unit squares
7. $(x-2)^{2}$ has \qquad unit squares
8. What do you notice about the constant term in your expressions for each?
\qquad
\qquad
\qquad

